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Indentation load–displacement relations at the elastic

deformation stage
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Nanoindentation experiments are widely used by the
materials science community in the investigation of
Young’s modulus and the hardness of thin films. In this
paper, the problem is modeled as normal indentation of
an elastic half-space by a rigid frictionless axisymmet-
ric power-law indenter. An analytical solution, which
relates the indentation load to the penetration depth and
includes complete contact and incomplete contact situ-
ations, is presented. The solution is valid as long as the
contact area is simply connected. A domain is simply
connected if any simple closed curve can be shrunk to
a point continuously in the set.

When an axisymmetric punch indents normally into
a half-space (i.e., −∞ < x < ∞, −∞ < y < ∞, and
z > 0), there are two possibilities: one is that the whole
punch surface contacts with the half-space; the other is
that only part of the punch contacts with the half-space.
Following the terminology by Gladwell [1], the first
contact is called complete, and the second one is termed
incomplete. In the second case (Fig. 1a), the contact
pressure will drop to zero at the boundary of the contact
region. Complete contact can be further classified into
critical complete contact (Fig. 1b) and general complete
contact (Fig. 1c). In general complete contact, pres-
sure at the punch edge goes to infinity; in critical com-
plete contact, pressure drops to zero at the punch edge
and the pressure profile is similar to that of incomplete
contact.

In this paper, we consider a rigid frictionless axisym-
metric power-law indenter with its axis of revolution as
the z-axis indenting normally into the plane z = 0 of
an elastic half-space z ≥ 0. The problem is considered
using the linear theory of elasticity and the half-space
is assumed to be isotropic and homogeneous. The con-
tact region between the indenter and the half-space is
simply connected. The following equations give the rel-
evant displacement and stresses for the half-space. The
vertical component of the displacement is denoted by
uz, and the stress components have two subscripts cor-
responding to the appropriate coordinates. E and ν are
Young’s modulus and Poisson’s ratio of the half-space,
respectively.

As Fig. 1 shows, the boundary conditions for the
half-space at z = 0 are

τzr = τzθ = 0 (0 ≤ r < ∞) (1)

σzz = 0 (r > b) (2)

uz = h + aαrα (0 ≤ r ≤ b) (3)

where α is a positive real number and h is the indenta-
tion depth. The second term on the right-hand side of
Equation 3 describes the indenter shape. The radius of
the contact area (b) is less than or equal to the punch
radius (a).

For incomplete contact (Fig. 1a), the following con-
dition has to be satisfied [2]:
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The radius of the contact area and the indentation depth
are related by the following equation:
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Putting Equation 5 into the load–displacement relation
[2], we have
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Equation 6 shows that for a power-law indenter, its
load–displacement follows a power-law relationship
for incomplete contact situations.

Critical complete contact (Fig. 1b) is a transition
point from incomplete contact to general complete con-
tact; and the following condition has to be satisfied:
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The indentation depth is
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and the corresponding load is

P = −√
πα · �

(
2+α

2

)
�

(
3+α

2

) · aα · a1+α E

1 − ν2
. (9)

0022–2461 C© 2004 Kluwer Academic Publishers 5573



Figure 1 Different contacts.

For complete contact (Fig. 1c), the following relation
holds:
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The load displacement relation is
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From Equation 11, the total load has a linear relation-
ship with the penetration depth. If the indenters have
the same radius, their load–displacement curves will
be parallel to each other at the complete contact region.

From Equation 11, we also have contact stiffness
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Figure 2 Load–displacement curves (solid line is for a non-flat-ended
indenter, and dashed line is for a flat-ended indenter with the same
radius).
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Equation 12 is the same relation as the one for incom-
plete contact [3].

We summarize the different contact situations in
Fig. 2. Before critical complete contact, the load–
displacement follows a power-law relation; after that, it
is a linear relationship. The whole load–displacement
curve including incomplete contact and complete con-
tact is smooth.
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